Modeling seasonal variations of auroral particle precipitation in a global-scale magnetosphere-ionosphere simulation
نویسندگان
چکیده
[1] A variety of observations have shown strong seasonal variations in a vast array of magnetosphere-ionosphere parameters, including field-aligned currents, cross polar cap potential, and precipitating electron energy flux. In this paper we examine how these variations are modeled in the Lyon-Fedder-Mobarry (LFM) global-scale magnetohydrodynamic simulation of the coupled solar wind-magnetosphere-ionosphere system. In order to account for changes in the solar wind conditions caused by the seasonal variation of the Earth’s dipole tilt we carefully select the solar wind parameters so that the effective driving conditions are the same across the March, June, and December intervals examined. The seasonal variation of the field-aligned current strengths is in good agreement with observations, with the sunlit hemisphere having more current than the dark hemisphere in the June and December intervals. However, in order to bring the modeled precipitating electron energy flux into better agreement with the observations we need to utilize a modified current-voltage relationship which includes a proxy for illumination effects. We provide a detailed description of the LFM’s magnetosphere-ionosphere coupling interface including how illumination effects are incorporated into the model. This methodology for including these effects does not allow for determining if changes in conductance or ionospheric density are responsible for the changes. In addition to improving the agreement with observations the new version of the current-voltage relationship results in enhanced geomagnetic activity in the March interval examined and suppression of activity during the June interval.
منابع مشابه
Dawn and dusk sector comparisons of small-scale irregularities, convection, and particle precipitation in the high-latitude ionosphere
[1] Small-scale ionospheric irregularities and auroral precipitation are common features of the auroral ionosphere, but their spatial association has not been examined on global scales. In this paper, we compare electron and ion precipitation from individual passes of the Defense Meteorological Satellite Program (DMSP) spacecraft with concurrent observations of ionospheric irregularities and pl...
متن کاملMultiscale electrodynamics of the ionosphere-magnetosphere system
[1] In this paper we investigate how the parameters of the ionosphere and the low-altitude magnetosphere mediate the formation and spatiotemporal properties of small-scale, intense electromagnetic structures commonly observed by low-altitude satellites in the auroral and subauroral magnetosphere. The study is based on numerical modeling of a time-evolving, nonlinear system that describes multis...
متن کاملVariations of total electron content during geomagnetic disturbances: A nlodel/olmervation comparison
This paper studies the ionospheric response to a major geomagnetic storm of October 18-19, 1995, using the thermosphere-ionosphere electrodynamics general circulation model (TIEGCM) simulations and the global ionospheric maps (GIM) of total electron content (TEC) observations from the Global Positioning System (GPS) worldwide network. The TIE-GCM results, which utilize the realistic time-depend...
متن کاملUse of a hybrid code for global-scale simulation of the Earth's magnetosphere
An understanding of the Earth’s magnetosphere and the magnetospheric substorm requires an ability to simulate kinetic processes in a global context. To this end we have developed a hybrid code with a number of innovative features: (1) The code uses a general curvilinear coordinate grid enabling it to accommodate disparate size scales. (2) The cold, dense plasma inside the plasmapause, where kin...
متن کاملIntroduction to the thematic series “Coupling of the magnetosphere–ionosphere system”
This thematic series contains 4 papers mostly presented at the 2016 AOGS meeting in Beijing. The four papers investigate four key regions in the magnetosphere–ionosphere coupling process: mid-tail magnetosphere, near-Earth magnetosphere, inner magnetosphere, and the polar ground region. Guo et al. (Geosci Lett 4:18, 2017) study the current system in reconnection region using 2.5D particle-in-ce...
متن کامل